Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
نویسندگان
چکیده
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite.
منابع مشابه
Distance protection closed-loop testing using RTDS
This paper presents a distance protection test procedure by applying the Real-Time Digital Simulator (RTDS) of a power system. RTDS is a tool to design, develop, and test power-system protection. The RTDS enables real-time computation of electromagnetic phenomena with a calculation time step of even 50μs. The hardware allows the import and export of many signals from the simulator to an ext...
متن کاملDistinct element modelling of the mechanical behaviour of intact rocks using voronoi tessellation model
This paper aims to study the mechanical behaviour and failure mechanism of intact rocks under different loading conditions using the grain based model implemented in the universal distinct element code (UDEC). The grain based numerical model is a powerful tool to investigate complicated micro-structural mechanical behaviour of rocks. In the UDEC grain based model, the intact material is simulat...
متن کاملEffect of freeze-thaw cycle on strength and rock strength parameters (A Lushan sandstone case study)
In an era of continued economic development around the globe, numerous rock-related projects including mining and gas/oil exploration are undertaken in regions with cold climates. Winters in the Iranian western and northwestern provinces are characterized by a high precipitation rate and a cold weather. Under such conditions, rocks are exposed to long freezing periods and several freeze-thaw (F...
متن کاملA New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...
متن کاملHybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin
Fiber reinforced concrete (FRC) has been widely used due to its advantages over plain concrete such as high energy absorption, post cracking behaviour, flexural and impact strength and arresting shrinkage cracks. But there is a weak zone between fibers and paste in fiber reinforced concretes and this weak zone is full of porosity, especially in hybrid fiber reinforced concretes. So it is necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 372 2023 شماره
صفحات -
تاریخ انتشار 2014